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ABSTRACT
We employ the multi-resolution hidden Markov model
(MRHMM) to develop an improved algorithm for
modeling marine mammal wandering tone vocaliza-
tions (whistles). A vocalization is modeled by a series
of time segments in which the signal has a constant
frequency rate (chirps). Rather than using chirps of
uniform length, the segments are allowed to be of
variable size, thus adapting to both short rapid changes
in frequency rate as well as long segments of constant
rate. The method supports the goals of finding the
single best segmentation or the average joint proba-
bility density function of the data over all possible
segmentations, weighted by the a priori probability of
each segmentation. The probability density function
(PDF) projection theorem is used to allow likelihood
comparisons in the raw data domain. Simulated data
and recorded marine mammal vocalizations are used
to demonstrate the technique.

I. THE PROBLEM ADDRESSED

Signal processing may be defined broadly as the art
of extracting information from raw data in order make
inferences about the nature of the data source. In many
situations, the data consists of signals in noise and
the exact nature, location in time, and duration of the
signal are not known a priori. Since the best type of
processing depends on the exact nature of the signal as
well as its duration and time, which are unknown, the
pursuit of the “optimal” processor requires a search
over many degrees of freedom. Three problems arise:
(A) a huge processing load, (B) the problem of making
sense of the huge amount of information output by the
processor, (C) the challenge of providing information
in a consistent form. This last problem is due to
the limits of classical decision theory that require a
common “feature space” in which to make decisions.

The multi-resolution HMM (MRHMM) simultane-
ously addresses problems (B) and (C). Through a
unique adaptation of the standard forward procedure
of the hidden Markov model (HMM), the MRHMM

addresses problem (B) by combining the likelihood
function outputs of a large number of overlapping
processing windows of various sizes into a single
probabilistic model. Problem (C) is addressed with the
probability density function (PDF) projection theorem
and the class-specific method [1], which eliminates
the need for a “common feature space” by allowing
all models to compete using likelihood functions ref-
erenced to the raw data without the negative effects
of high dimensionality. With limitations (B) and (C)
eliminated, the only problem remaining is that of
processing load which will be addressed in the future.
In this paper, we explore how the MRHMM can be
applied to the detection, estimation, and separation of
marine mammal wandering tone vocalizations (whis-
tles).

II. THE MRHMM

We assume familiarity with hidden Markov models
(HMMs). A good reference is an article by Rabiner [2]
from which we borrow some notation. The MRHMM
was introduced by Baggenstoss in 2008 [3]. It is a
generalization of the first-order HMM. This algorithm
employs the PDF projection theorem [1], or PPT, to
derive the raw-data log-likelihood functions of a set
of analysis windows, then combines these windows in
an optimal fashion to represent any input signal. The
main concepts of the MRHMM are illustrated in Fig. 1
and will be explained next. The MRHMM is described
in more detail in [3].

II-A Dwell Time Constraints

On the top of the figure, we see a time scale in
divisions of T samples and a hypothetical signal con-
taining a sinewave of length 12T samples and a noise
burst of 4T samples. We assume that the signal has
been produced by a system that transitions between
any of M Markov states. In the figure, we show three
such states: m = 1 “noise”, m = 2 “sinewave”, and
m = 3 “noise burst”. A standard HMM is allowed,
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Fig. 1. Main concepts of the MRHMM.

subject to pre-determined transition probabilities, to
transition from one state to another at any time incre-
ment and remain in a given state for any number of
time increments (the dwell time). Unlike the standard
HMM, the MRHMM puts hard constraints on the
dwell times. The constraints for state m are represented
by K m, the set of available processing window sizes
in terms of T , and E m, the entry flags. We can think
of the dwell time in state m as composed of a set
of building blocks (or segments) selected from the
set K m. For example, if K m = {12,8,4}, the dwell
time in state m can be composed of any combination
of segments of size k = 12,8, or 4 time increments.
The entry flag associated with each element of K m

determines if the system can enter state m with that
value of k. For example, E m = {1,1,0} means that
the system can enter state m with either k = 12 or
k = 8, but not k = 4. Note that this effectively means
a minimum dwell time of k = 8 time increments.

For the hypothetical situation above, the following
constraints are proposed:

State Name K E
1 Noise 12,8,4,2 1,1,0,0
2 Sinewave 12,8,4 1,1,0
3 Noise Burst 4,2 1,1

Notice that the minimum dwell times (the smallest
element of K with an associated entry flag of 1) are
actually smaller than the segment sizes seen in Fig. 1
to allow for variations that are expected in the data.

II-B Processing Windows, Likelihood Functions,
and Paths Through the State Trellis

We will now see how the dwell-time constraints trans-
late into processing windows. In Fig. 1, under the
hypothetical signal, are a set of “processing windows”
or “segments” of varying length (in increments of
T samples) and starting time (also in increments of
T samples). Each segment is labeled with the state
m and segment length k in terms of the number
of time increments. Let xt,k be the vector of data

in the segment of length kT samples that starts at
time increment t. Thus, it is composed of samples
1+(t−1)T through (t−1+k)T of the input raw data.
We will briefly discuss the PPT in a later section, but
for now assume that we are able to calculate the raw
data likelihood functions

Lt,k|m = log p(xt,k|Hm),

where Hm is the statistical hypothesis that state m is
true, for all states m, all k ∈ K m, and all t such that
xt,k is contained within the input data record. Note
that each processing window in Fig. 1 corresponds to
a different t,k, and m and therefore has associated with
it the likelihood value Lt,k|m.

The state trellis is the state-vs-time plane. A poten-
tial sequence of states that the system can experience
is called a path through the trellis. In the standard
HMM, the path is all that must be defined in order to
know the system behavior. In the MRHMM, however,
it is also necessary to know the sequence of segment
sizes as well. Thus, for the MRHMM, the path defines
not only the sequence of states, but also the segment
sizes (in terms of the number of time increments k).

A valid path must meet the dwell time constraints
of the MRHMM. Let s be a valid path (a sequence of
states and segment lengths) through the state trellis.
The likelihood function of all data associated with a
given path is written

L(X|s) =
n(s)

∑
i=1

Lti,ki|mi
,

where n(s) is the number of segments associated with
path s, and ti,ki,mi are the start time, segment length,
and state of the ith segment in path s. Notice that there
is an implicit assumption of conditional independence
among segments (conditioned on knowing the path s).

In order to provide the necessary likelihood func-
tions Lt,k|m, it is necessary to compute the processing
windows for all valid combinations of t,k, and m. This
is illustrated in Fig. 2. It is clear to see why pro-
cessing load is an issue with the MRHMM. However,
note that this assessment is based on the brute-force
calculation of each processing window from scratch.
As the windows become more heavily overlapped,
the opportunity for processing reduction from time-
recursive processing increases.

II-C Mathematical Problems Solved by the
MRHMM

We now have the background and have made the
necessary definitions in order to define the problems
that we seek to solve.
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Fig. 2. Illustration of some of the processing windows that need
to be computed as input to the MRHMM. In all, it is necessary to
compute all window sizes at all start times for each state.

II-C.1 Average Joint PDF (Likelihood Function)

For the classification problem, it is not important
which path through the state trellis had actually oc-
curred. We are more interested in the average PDF.
Let

pMRHMM(X) = ∑
s∈S

p(s) exp{L(X|s)}, (1)

where S is the set of all valid paths through the state
trellis. This quantity is the average joint PDF of the
raw data averaged over all valid paths and weighted
by the a priori probability of a given path p(s). In the
same fashion as the standard first-order HMM, the a
priori path probability is the product of the transition
probabilities of the state transitions that make up the
given path, which are derived from training data. All
such paths are, naturally, subject to the dwell-time
constraints of the MRHMM.

The summation in (1) does not need to be explicitly
enumerated. The MRHMM algorithm is a modification
of the HMM that is able to compute p(X) efficiently
using the forward procedure of the standard HMM
[2] by expanding the states to include wait states and
slave states and by the innovation of using partial PDF
values [3].

II-C.2 MRHMM Initialization and Parameter Re-
Estimation

The MRHMM parameter set includes the state feature
PDF estimates p̂(zm|Hm), and the state transition prob-
abilities. To initialize the MRHMM, training events
are identified by hand-labeling a portion of data with
the state labels. Features from the labeled segments
can then be used to initialize the state feature PDF
estimates. The Baum-Welch algorithm, which is used
to iteratively improve the estimates of the HMM
parameters, is suitably modified for the MRHMM [3].
Flat (equi-probable) state transition probabilities can
be used for the first iteration of the Baum-Welch

algorithm. As in the standard first-order HMM, the
state feature PDF estimates are re-estimated based on
the data input to each processing window, weighted by
the a posteriori state probabilities. The state transition
probabilities are also updated based on the transitions
that are estimated to have occurred [3].

II-C.3 A Posteriori State Probabilities

The Baum-Welch algorithm produces, as a by-product,
the a posteriori state probabilities. The quantity γt,m
is the probability that state m is in effect at time
increment t given all the data X. These probabilities
tell the entire story about what can be inferred about
the system’s state and segment sequence.

II-C.4 Segmentation (Most Likely Path)

It is often important to know the single most likely
path through the state trellis. This most likely path
is also a segmentation of the raw data because it
defines the segment sizes (and their states) that best
fits the given data. Determining the most likely path
requires an implementation of the Viterbi algorithm
[2], although it is often the same answer obtained by
maximizing γt,m over m at each time step.

II-D MRHMM Implementation

The MRHMM is implemented by the standard forward
procedure applied to an expanded set of states. In the
expanded state trellis, there is a partition of k wait
states (an artificial state for which the probability is
100 percent that the state increments by 1 on the
next time step) for each segment size alloted to each
state. In the preceding example, there were 9 partitions
consisting of a total of Nwait = 56 wait states. The
expanded state transition matrix is Nwait × Nwait in
size and implements all of the dwell-time constraints
of the MRHMM. The MRHMM effectively “fools”
the standard forward procedure into thinking it is
implementing a regular HMM with Nwait states. Thus,
it requires a state observation probability for each state
at each time step. To resolve the problem associated
with multiple segment lengths, the MRHMM provides
to the forward procedure the average log-probability
of the partition, that is the log-probability of the
segment divided by the segment length k. Because of
the forced forward march of wait-states, the MRHMM
is forced to accumulate the k partial probabilities into
the full segment log-likelihood.

II-E The PDF Projection Theorem (PPT)

We have previously defined Lt,k|m in terms of the
segment raw data PDF p(xt,k|Hm) which we will now
calculate using the PDF projection theorem [1]. We
describe the method briefly; greater detail can be found
in the tutorial article [4]. Let x be a general segment



of raw time-series data. Let zm = Tm(x) be a feature
set calculated from x specifically designed for state
m. Let p̂(zm|Hm) be a PDF estimate of the feature set
zm based on training data from state m. The feature
likelihood function is projected from the feature space
to the raw data by pre-multiplying by the J-function
as follows:

p(x|Hm) = J(x;Tm,H0,m) p̂(zm|Hm). (2)

The function p(x|Hm) can be regarded as a function
only of x by substituting Tm(x) for zm and can be
shown to integrate to 1 over x (thus it is a PDF).
The J-function is a unique function of x determined
precisely from the feature transformation Tm and the
class-dependent reference hypothesis H0,m:

J(x;Tm,H0,m) =
p(x|H0,m)
p(zm|H0,m)

. (3)

Since J(x;Tm,H0,m) is determined a priori without re-
gard to training data, it can be considered the untrained
part of p(x|Hm), while p̂(zm|Hm) is the trained part.

While it is true that p(x|Hm) computed in this
manner is a PDF, it is only an estimate of p(x|Hm).
The degree to which p(x|Hm) is a good estimate
depends on (a) the accuracy of p̂(zm|Hm) and (b) the
degree to which zm is a sufficient statistic for the
binary hypothesis test between Hm and H0,m. In the
rare case that zm is in fact a sufficient statistic, the
accuracy of p(x|Hm) depends only upon the accuracy
of the low-dimensional PDF estimate p̂(zm|Hm).

II-E.1 Maximum Likelihood Form

The J-function takes many forms [1], one of which
can be used when zm are maximum likelihood (ML)
estimates of a set of parameters:

zm = θ̂ .

In this case, J(x;Tm,H0,m) has a simple form based on
the Fisher’s information matrix [1]. We have

p(x|Hm) =
p(x; θ̂)

(2π)−
D
2 |I(θ̂)| 1

2

p(θ̂ |s), (4)

where D is the dimension of θ̂ and I(θ) is the Fisher’s
Information matrix [5]. We will utilize this form later
in the development of the chirp model.

II-F MRHMM Example Using Simulated Data

To illustrate the concepts, and give examples of the
output of the MRHMM, we borrow a simulated data
example from a previous publication. See [3] for
additional details. The signal consists of independent
identically distributed (iid) Gaussian noise to which
was added a low frequency (LF) pulse of autoregres-
sive (AR) process of 128 samples in length with a
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Fig. 3. Example of spectrogram of synthetic data. The data
consists of three signal classes. Class 1 (noise) occurs first, then
a low-frequency pulse of duration 128 samples, then noise, then a
high-frequency pulse of duration 64 samples.

peak frequency response of 0.4 radians per sample,
followed by a random-length gap of at least 256
samples, followed by high frequency (HF) pulse of
AR process of 64 samples with a peak frequency
response of 1.2 radians per sample. An example of
the spectrogram of the signal and noise is shown
in Fig. 3. We implemented the MRHMM with three
signal states, “Noise”, “LF pulse”, and “HF pulse”.
The time increment was T = 32 samples, thus the
signal durations are k = 4 and k = 2 for the LF and HF
pulses. The dwell time constraints are listed below:

State Name K E
1 Noise 8,4,2,1 1,1,1,0
2 LF Pulse 4,2,1 1,0,0
3 HF Pulse 2,1 1,0

For features, we used autoregressive linear predictive
coding (LPC) features with model order P depending
on the segment length k. A separate feature processor
was used for each combination of k and P. Fea-
tures were shared between states that had the same
k and P values. Features were extracted from each
analysis window by first taking the FFT, computing
the magnitude squared, then computing the inverse-
FFT to produce the autocorrelation function (ACF).
The Levinson algorithm was used to produce the
reflection coefficients of order P from the ACF. The
total power in each window is also stored as the P+1st
feature. The J-function [1] is obtained by use of the
saddle-point approximation [6]. Further details on the
implementation of the AR models can be found in [4].

In order to assist in intuitive understanding of the
MRHMM behavior, it is useful to describe the wait
states and the partial PDF matrix which are at the
core of operation of the MRHMM. As we explained,
to implement the dwell time restrictions, the MRHMM
defines wait states which are artificial states that count
the time increments that the system spends in a given
state. For each processing window size k and state m,
there is a partition of k wait states. In Fig. 4, we see the
partial PDF matrix corresponding to the data sample
in Fig. 3. The partial PDF matrix is nothing more
than the segment log-likelihood values Lt,k|m expanded
along diagonal lines to fill out the wait states. As can



Fig. 4. Partial PDF matrix showing divisions between signal
classes (solid horizontal lines) and between wait state partitions
(dotted lines). Higher probability is darker.

be seen on the Y axis, there are partitions of wait-
states corresponding to each signal state m and each
element of K m. Divisions between signal states are
solid horizontal lines and divisions between wait state
partitions are dotted lines. The log-likelihood values
are scaled by 1/k so that if one adds up the k values
along any diagonal line within a partition in the partial
PDF matrix, one obtains Lt,k|m.

One way to interpret the figure is to imagine that
your task is to traverse the figure and collect as much
log-likelihood as possible. To do this, select a partition,
then follow the diagonal lines from the top of a
partition to the bottom. Once you reach the bottom
of the partition, switch vertically to a new partition.
Continue the process until you reach the last time
increment. Whenever you switch to a new partition,
you must do so in accordance with the dwell-time
restrictions and the state transition probabilities.

The a posteriori state probabilities γt,m computed by
the Baum Welch algorithm [2] indicate the probability
of each wait state at each time step given all of the
data. They are obtained from the forward procedure
and the backward procedure which, as the name sug-
gests, is the forward procedure running backward in
time. The values of γt,m corresponding to Fig. 4 are
shown in Fig. 5. In this figure, one can follow the
trajectory that picks up the highest probabilities while
meeting the dwell time restrictions. However, because
all paths are represented, competing solutions can also
be seen. Note that the existence of the “LF pulse”
(time steps 39 through 42, partition 5, wait states 16
through 19) is clearly seen with no ambiguity. The
same is true of the “HF pulse” (time steps 57 and 58,
partition 8, wait states 23 and 24). At other times, it
is possible to see various competing paths through the

Fig. 5. Gamma probabilities expanded to include wait states.
High probability is darker. The axes are the same as the partial
PDF matrix in Fig. 4. In fact, the best path through Fig. 4 can be
inferred from the a posteriori state probabilities, γt,m.

Fig. 6. Signal class probabilities calculated by summing Fig.
5 over the wait states of each class. Darker is higher probability.
Time runs from left to right. Signal class identity is on the vertical
axis: top = Noise, middle = LF pulse, bottom = HF pulse.

trellis. Note for example in time steps 43 through 56,
the gap between the two pulses, the MRHMM is in
the noise signal class. In steps 43-50, it is in partition
1, (wait states 1 through 8). Then after exiting wait
state 8, it has located two possibilities to span the six
time steps remaining before HF pulse occurs. It can
either go into partition 2 (wait states 9 through 12),
then partition 3 (wait states 13 through 14), or it can
choose the reverse, partition 3 then partition 2. In this
case, the higher likelihood path was partition 3 then
partition 2.

The a posteriori state probabilities can be collapsed
to indicate just the signal classes, as shown in Fig.
6. The class probabilities (Fig. 6) are an accurate
indication of the true content of the data to a time
resolution of T = 32 samples.

III. THE CHIRP MODEL

A class-specific (CS) module for chirp signals was de-
veloped to compute features from wandering narrow-
band frequency lines (whistles). The whistles are mod-
eled as a sequence of linear FM chirps. The front-
end processing must estimate the parameters of the
chirp signal (frequency, frequency-rate, phase, noise
variance) in each processing window (at every segment



size and for every staring time). It is the task of
the MRHMM to make sense of the myriad segment
outputs. The hope is that the MRHMM will model
the whistle with short segments at times where the
frequency-rate was changing rapidly, and with long
segments at times where it was stable. Below is the
description of the processing that must be repeated for
each processing window.

To apply the PPT, we used the ML form of the
J-function (section II-E.1). This requires a parametric
model for the data. A model for a chirp signal of length
N is

c(n) = w(n,θ )+η(n), n = −N
2

+1, . . . ,
N
2

, (5)

with

w(n,θ ) = Re
{

(a1 + ja2)exp
(

j(2π f n+
γ
N

n2)
)}

,

(6)
where a1 + ja2 is the complex amplitude, f is the start
frequency, γ is the chirp rate and η(n) are samples of
white Gaussian noise with unknown variance σ 2. The
module computes the ML estimates of the parameters
θ = [a1,a2, f ,σ 2,γ ] as features.

Maximization of the log-likelihood function is ac-
complished using a two-stage procedure. First, a
grid search over frequency and chirp-rate space is
performed to obtain initial estimates of f and γ . The
observed data x(n) is multiplied by a set of chirp
replicas formed by varying f and γ with the result
transformed to the frequency domain to produce the
frequency-chirp surface

S(γ , f ) =

∣∣∣∣∣∣
N
2

∑
n=− N

2 +1

x(n+
N
2

) e j(2π f n+ γ
N n2)

∣∣∣∣∣∣
2

, (7)

which can be efficiently computed using the FFT. The
values of f and γ at the peak of S(γ , f ) provide coarse
estimates of these parameters. These estimates are
then used to initialize the second stage of the ML
search. The log-likelihood function is given by

log p(x|θ ) = −N
2 log(2πσ 2)

− 1
2σ 2 (x−w(θ))T (x−w(θ)),

(8)
where x and w(θ) are length-N vectors of observed
and modeled data respectively. Maximization of
the log-likelihood function is accomplished using a
Newton-Raphson search initialized with the param-
eter set θ = [0,0, f0,σ 2

s ,γ0], where f0 and γ0 are
the estimates obtained from the grid search and σ 2

s
is the sample variance computed from the observed
data. Typically, a maximum of five Newton-Raphson
iterations are required for convergence.

When the feature set for a CS module is a ML esti-
mate for the parameters of the PDF of the model, as in

this case, computing the J-function is straightforward.
From (4), the J-function is given as

J(x,T,H0) =
p(x|θ̂)

(2π)−D/2
∣∣I(θ̂)

∣∣1/2
, (9)

where θ̂ are the ML estimates of the parameters, D is
the dimension of θ̂ and I(θ̂) is the Fisher’s informa-
tion matrix (FIM) evaluated at θ̂ . The components of
the FIM are given by [5]

Iθk,θi(θ ) = −E
(

∂ 2 ln p(x ; θ )
∂θk∂θi

)
. (10)

For the chirp module, the elements of the FIM written
in compact vector form are shown in Eq. 11, where
the length-N vectors are generated using

c = cos(2π f n+ γ
N n2)

s = sin(2π f n+ γ
N n2)

c f = −2πnsin(2π f n+ γ
N n2)

s f = 2πncos(2π f n+ γ
N n2)

cγ = − n2

N sin(2π f n+ γ
N n2)

sγ = n2

N cos(2π f n+ γ
N n2)

(12)

for n = −N
2 +1, . . . , N

2 . Operating in the log domain,
the J-function for the chirp module is written as

logJ(x,T,H0) = −N
2 log(2πσ 2)

− 1
2σ 2 (x−w(θ̂))T (x−w(θ̂ ))

− log
(
(2π)−D/2

∣∣I(θ̂)
∣∣1/2

)
.

(13)

IV. RESULTS

We first apply the MRHMM to a simple whistle
sequence, then to a superimposed set of whistles plus
clicks.

IV-A Simple Whistle Analysis

To demonstrate the MRHMM on biologic whistles, we
created an MRHMM using two states: “Chirp” and
“Noise”. For the chirp state, we used the ML chirp
model features described above. For the noise state,
we used only noise power features. The time increment
was T = 64 samples. The dwell time constraints are
summarized below:

State K E Features
Chirp 12,6,4,3,2,1 1,1,1,1,0,0 ML Chirp
Noise 12,6,4,3,2,1 1,1,1,1,0,0 Power

The largest segment size was 12×64 = 768 samples.
For illustration, we selected the whistle sequence

illustrated in Fig. 7. The whistle was frequency-shifted
and downsampled to 8333 Hz to occupy most of the
band for clarity. The time-series and spectrogram are
shown on the top two graphics in the figure. The
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Fig. 7. Spectrograms of raw data, synthesized signal and residual.

synthetic chirp signals are overlaid in alternating col-
ors on top of the time-series. These were synthesized
from the estimated chirp parameters of the segments
corresponding to the most likely segmentation (path).
Those segments that are classified as “Noise” have
no synthetic signal overlay. The spectrogram of the
purely synthetic signal is shown on the third graphic.
On the fourth (bottom) graphic, the synthetic sig-
nal is subtracted from the input data revealing the
spectrogram of the residual noise. As expected, the

“optimal” segmentation exhibits short segments during
times of rapid change, and long segments during times
of stability. Note also the classification of segments
with no chirp as “Noise”. Also interesting to note is
the capturing of both the weak tonal interference at
the start of the time-series and the weak chirp in the
middle.



IV-B Whistle Separation

To demonstrate the ability of the MRHMM to assist
in signal separation, it was applied to superimposed
marine mammal whistles and clicks. The spectrogram
of the signal we will use to demonstrate the technique
is shown in the upper plot of Fig. 8. As seen in
the figure the signal consists of three components,
those being two marine mammal whistles and a set
of clicks. The weaker of the two whistles appears
to be a multipath reflection of the stronger. All
three components overlap simultaneously in time and
frequency.

We implemented the MRHMM assuming two states
corresponding to the signal classes: “Noise” and
“Chirp”. This time, the ML chirp feature module was
used to compute features for both signal and noise
classes. For the noise portions of the data, we would
expect the ML estimate of the complex amplitude
of the chirp model to have a magnitude of nearly
zero. We selected an elemental segment length of
T = 128 samples with six analysis window lengths:
[128,256,512,768,1024,2048]. Therefore, the dwell
time constraints are:

State K E Features
Noise 1,2,4,6,8,16 1,1,1,1,1,1 ML Chirp
Chirp 1,2,4,6,8,16 1,1,1,0,0,0 ML Chirp

Fig. 8 shows the spectrogram of the raw data and
the gamma probabilities computed by the MRHMM.
The partitions for the noise states are shown in the
top half of the gamma probabilities plot separated
by red horizontal lines and those for the chirp states
are shown in green in the bottom half of the plot.
Fig. 9 shows the spectrograms of the raw data, the
synthesized data and the residual signal. The residual
is computed by subtracting the synthesized data from
the raw data. The synthesized signal is generated
from (6) using the set of features from the signal
class with the highest likelihood at each time step.
The synthesized signal produced a highly accurate
reconstruction of the high power whistle, which when
subtracted from the raw data, produced a residual
signal with the low power whistle and clicks clearly
intact. The residual signal was again processed by
the MRHMM. Fig. 10 shows the spectrograms of the
residual signal, synthesized signal and second residual.
The spectrogram of the second residual demonstrates
the effectiveness of the technique in removing the low
power whistle while leaving the clicks intact.

A potential area for improvement of the existing
algorithm is illustrated near the end of the super-
imposed whistles (near time step 600) where the
MRHMM switches between modeling the two whis-
tles. This problem is attributed to the assumption of
independence of the segments given the state index.
Improved continuity would result if the prediction of
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Fig. 9. Spectrograms of raw data, synthesized signal and residual.
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Fig. 8. Spectrogram of raw data and gamma probabilities (higher probability is lighter) computed by the MRHMM.

chirp frequency and frequency rate was integrated into
the statistical model. This is the topic of future work.

V. CONCLUSIONS

We have demonstrated the power of the MRHMM as
an analysis tool for modeling and separation of marine
mammal vocalizations. The ability of the MRHMM to
find optimal segmentations of the data into piecewise
linear FM chirps produced highly accurate models that
can be used to coherently remove whistles, leaving
a residual signal in which additional superimposed
signals are clearly evident. This technique may have
applications, for example, in density estimation of
marine mammals.
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